Tag Archives: droplets

Why so many?

This post is about our work “The key physical parameters governing frictional dissipation in a precipitating atmosphere” (Makarieva, Gorshkov, Nefiodov, Sheil, Nobre, Bunyard, Li). This paper was submitted to the Journal of the Atmospheric Sciences on August 18, 2012. The topic of this paper relates directly to what is currently discussed in the mainstream meteorology. We outlined this in the accompanying cover letter:

The general topic has generated recent interest and will interest your readers. In this paper we clarify and solve a number of challenges in estimating the power density of frictional dissipation associated with precipitation. In doing this we have identified and addressed a number of errors and discrepancies in some other recent publications on this topic. This notably includes one in this journal Pauluis, et al. 2000: J. Atmos. Sci., 57, 989-994. (Please note that we have written to two authors to potentially initiate a discussion, Dr. Pauluis and
Dr. Dias, initially concerning discrepancies in their recent paper in Science, but we have not heard a reply to date and we do not feel we should wait).

We had not heard from the Editors until December 19, 2012, when in response to our second query about the paper’s status the Journal responded to the corresponding author (the emphasis is ours):

Dear Dr. Sheil,
We had a hard time finding a 2nd reviewer for this paper.  Over 20 invites went out but finally we found one.  The 2nd review is not due until the first week of January.  Assuming all goes as it should, you should receive an initial decision shortly into the new year.

Best regards,
Jean
Ed Asst, JAS

I would not discuss this in public had it not been for the fact that our recent meteorological paper had been under peer-review for over two and a half years. There too the Journal had enormous difficulties in finding the reviewers. (Actually the authors had to do that themselves.) What are the implications of this situation?

UPDATE 18-January-2013

CORRECTIONS AND CLARIFICATIONS, Science, vol. 339, p. 271:

Reports: “Satellite estimates of precipitation-induced dissipation in the atmosphere,” by O. Pauluis and J. Dias (24 February 2012, p. 953). The authors inadvertently used a “rectangular” method for the integration rather a “trapezoidal” method. This led to an overestimation of the integral and the dissipation rate by about 20%. In the published paper, the dissipation rate is said to be about 1.8 W/m2. The new calculations yield 1.5 W/m2. The corrected Figs. 1 and 3 are shown here (right). The authors thank A. Makarieva, V. Gorshkov, A. Nefiodov, D. Sheil, A. Nobre, P. Bunyard, and B.-L. Li for bringing this problem to their attention.